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Overview

Some tau functions from enumerative geometry/2D topological field theories have an
isomonodromic interpretation.

Examples:

o intersection theory on the moduli space of Riemann surfaces (Kontsevich-Witten tau
fUnCtiOn) [Bertola and Cafasso, CMP 2017]

open version (Kontsevich—Penner tau function) [gertola and R, arXiv:1711.03360]

©

O r—spin VErsion [in progress]

©

Brezin—Gross—Witten tau function [in progress]

stationary sector of the Gromov-Witten theory of P! [in progress]

©
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Overview

Some tau functions from enumerative geometry/2D topological field theories have an
isomonodromic interpretation.

Examples:

o intersection theory on the moduli space of Riemann surfaces (Kontsevich-Witten tau
fUnCtiOn) [Bertola and Cafasso, CMP 2017]

open version (Kontsevich—Penner tau function) [gertola and R, arXiv:1711.03360]

©

O r—spin VErsion [in progress]

Brezin—Gross—Witten tau function [in progress]

©

o stationary sector of the Gromov—Witten theory of P! [in progress]

Applications:
o rigorous asymptotic study of large N matrix integrals
o explicit generating functions for correlators

o derivation of Virasoro constraints
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Plan of the talk

o Outline of the other cases

o Detailed exposition of the result in the case of the Kontsevich—Witten tau function
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Isomonodromic approach to the K ich—Witten tau fi

The Kontsevich—Witten tau function

Let (14, -+ - 7a,) = f%wfl A --- A" be the Witten intersection numbers
(diy....dn >0, d1 + -+ - + dy = 3g — 3+ n). Form the generating function

t: oo t1t 2t
F(tl’t3""):2 Z w<7}1'”7—d”>7€+24+§+ +1787+...
n>1dy,...,d,>0 ’
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The Kontsevich—Witten tau function
Let (Tay - - - Td,) == ffwfl A -+ A" be the Witten intersection numbers
(diy....dn >0, d1 + -+ - + dy = 3g — 3+ n). Form the generating function

t: RN ty ts 2t
F(tl,t3,...):z Z w<7—ﬁ...7—dn>,€+24+%+ +1787+
n>1dq,...,dy>0 ’

Witten, Kontsevich, Dijkgraaf, Verlinde, Verlinde,...1991-1992

7'KW(tl7 t3,...) := exp F(t1, t3,...) is a KdV tau function, uniquely selected by the string
equation L_;7" =0,
o o .8
L_ tayo— + —.
“n T 2 gt
a>1, a odd
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Let (Tay - - - Td,) == ffwfl A--- A be the Witten intersection numbers
(diy....dn >0, d1 + -+ - + dy = 3g — 3+ n). Form the generating function

t: RN ty ts 2t
F(tl,t3,...):z Z w<7—ﬁ...7—dn>,€+24+%+ +1787+

n>1d,...,dy>0

Witten, Kontsevich, Dijkgraaf, Verlinde, Verlinde,...1991-1992

7'KW(tl7 t3,...) := exp F(t1, t3,...) is a KdV tau function, uniquely selected by the string
equation L_;7" =0,
o o .8
L_ tayo— + —.
“n T 2 gt
a>1, a odd

Equivalently: 75 (t1, t3,...) satisfies Ly7*" = 0 for k > —1. The operators

(a+2k)!! 0 1 ”® 8 1
Ly = e S = N+ 26 1+ 26
‘ a>lza:odd (a—2)1 ( ’3)ata+2k +2 ab>lzab odd ’ ataatb+ 27 1+8 °

a+b=2k

are called Virasoro operators. They commute as [Lk, L;] = (k — /) Lk for k, [ > —1.
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Isomonodromic approach to the K ich—Witten tau fi

The Kontsevich matrix integral
Fix N > 1 and take the ratio of determinants

det[¢1()\k)], k=1
det[)\

TN(Tl, ceey TN) =

]jk 1 T[:%()\ e/2, . +)\—1’/2)

where ¢;(A) = A= (1 + O(A\~3/2)) € A'Z-C[A~3] are defined by
exp(—%)}/z)

2 i/a %) Ao (21).

(&) A~
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The Kontsevich matrix integral
Fix N > 1 and take the ratio of determinants

det[qu(/\k)], k=1

TN(Tl, ceey TN) =
det[)\ ]1 k=1 e 12 V3
where ¢;(A) = A= (1 + O(A\~3/2)) € A'Z-C[A~3] are defined by
) oxpf — 223/2
(—%)klAi(k)N‘z(ﬁii‘f/a )¢j(/\)’ A=rtoo (j21).
Equivalently, 7y(T1, ..., Tn) is the asymptotic expansion of the Kontsevich matrix integral

3
Zn(M) ::/ exptr (ix?f/\l/zXz) dX// exptr (f/\l/zxz) ax
Hyn Hy

for positive large A = diag()\1, ..., An), expressed in the Miwa variables T, = %tr N2,
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The power series Ty(Tx, ..., Tn) € C[T1, ..., Ta] have a stable limit 7( T, T3, ...) when
N — oo which is by construction a KdV tau function.
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3
Zn(M) ::/ exptr (ix?f/\l/zXz) dX// exptr (f/\l/zxz) ax
Hyn Hy

for positive large A = diag()\1, ..., An), expressed in the Miwa variables T, = %tr N2,
The power series Ty(Tx, ..., Tn) € C[T1, ..., Ta] have a stable limit 7( T, T3, ...) when
N — oo which is by construction a KdV tau function.

Kontsevich, 1992
ok/3

W(t.‘;[7 t37...) = T(Tl, T3, ), Tk = —Wtk.
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Isomonodromic approach to the K ich—Witten tau fi

The Airy Stokes’ phenomenon

To describe the isomonodromic formulation of the Kontsevich-Witten tau function we
start by the Airy ODE -5 Wo(A) = [g (1)} Wo(A). lts Stokes' phenomenon at A = oo can

be summarized in the Riemann—Hilbert problem below.
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Isomonodromic approach to the K ich—Witten tau fi

The Airy Stokes’ phenomenon

To describe the isomonodromic formulation of the Kontsevich—-Witten tau function we

start by the Airy ODE -5 Wo(A) = g (1) Wo(A). Its Stokes' phenomenon at A = co can
be summarized in the Riemann—Hilbert problem below.

Vo(A ) = Wo(A—)M

Wo(A) ~ A°G(1 4+ O(A2))e’™, A = oo
Wo () analytic, analytically invertible

S = —%03
a1
G=|% 3
vz V2
2.3
19()\) = —A203
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Isomonodromic approach to the K ich—Witten tau fi

Schlesinger transformations (a la Bertola—Cafasso)

Fix N > 1 and points A1, ..., Ay and introduce the matrix

Dn(A) = Dn(A A, oo Aw) == [ [ diag(v/A) — VA, /A + V).

Find Wy (A) = Wn(A; A, ..., An) such that

Wy(A+) = Un(A-)M,  Wn(A) ~ A°G(1+ O(A2)e" ™Dy (A), A — oo
Wy (A)Dy(A) analytic and analytically invertible.
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Schlesinger transformations (a la Bertola—Cafasso)

Fix N > 1 and points A1, ..., Ay and introduce the matrix

Dn(A) = Dn(A A, oo Aw) == [ [ diag(v/A) — VA, /A + V).

Find Wy (A) = Wn(A; A, ..., An) such that

Wy(A+) = Un(A-)M,  Wn(A) ~ A°G(1+ O(A2)e" ™Dy (A), A — oo
Wy (A)Dy(A) analytic and analytically invertible.

If solvable, by Liouville Theorem we get an isomonodromic system:

Ly An) = Qw(h A)Wn(A L) (1<) < ).

Ny

dA
Bertola and Cafasso, 2017

The isomonodromic tau function 7y (A1, ..., Aw) coincides with the Kontsevich matrix
integral.
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Isomonodromic approach to the K ich—Witten tau fi

The limit N — oo

The tau function depends only on Dy MD,, (Bertola-Malgrange form). Then we can
pass to the limit N — oo by replacing

Dy (MM, s An) rexp > o3 T2
£>1, ¢ odd

where Ty = 202 + -+ 2"?).
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The limit N — oo

The tau function depends only on Dy MD,, (Bertola-Malgrange form). Then we can
pass to the limit N — oo by replacing

Dy (MM, s An) rexp > o3 T2
£>1, ¢ odd

where Ty = 202 + -+ 2"?).
Therefore we consider the following Riemann—Hilbert problem:

VO T) = VA= TOM, WX T) ~ A°6(1+ O(A2)e®N T X = o0

W(\; T.) analytic, analytically invertible, ©()\; T.) = exp Z o3(Te + %55,3)/\4/2
£>1, £ odd

Again we have an isomonodromic system (A, Q, polynomials in \)

d d
TV T) = AN TOW(X T, T

WU\ To) = Qoass (X T)W(A To) (d > 1)

and it can be proved (Bertola and Cafasso, 2017) that its isomonodromic tau function
7(T.) has 7" (T.) as asymptotic expansion.
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Isomonodromic approach to the Kontsevich—-Witten tau function
One—point function

The isomonodromic tau function is defined by the Jimbo—Miwa—Ueno formula:

_,d¥ 00 _,dVv 2d+1
log 7(T.) = — res tr (W '—— dX = — res tr (W= 2
DTy 08 T(T) = = res, '( X arzdﬂ) A= '( X 03) A

dA
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Isomonodromic approach to the K ich—Witten tau fi

One—point function

The isomonodromic tau function is defined by the Jimbo—Miwa—Ueno formula:

B LAy 90 B LAV | 2ea
Torms log7(T.) = Jes tr (‘U I 9Tarm dA = Jes tr v 03 A2 dX

Therefore we can compute the one—point function as follows:

oy (2d + 1)1 ) — -3 (2d + 1)1 dlog7(t.)

= o 2d+1 \d-+1 = o 2d+1 \d+1 6t2d+1 N
1 Olog7(T.) ( 1/2 dWo(n) ) d
= - % = — res tr vy o3 | pdp =
dz>0 Ad+1 8T2d+1 T,=0 ; /\d+1 o ( ) dﬂ
_ dWo(A
=tr (/\l/z\llo ) do/\( )0’3>

and W(\; T. = 0) = Wo(\) is known (Airy functions) therefore (after a simple
Laplace—Borel transform) we obtain the well known formula (ltzykson and Zuber, 1991)

d __ . _
Z(Td_2>x = exp ﬂ’ I.e. <7—3g72> = Fg’l

X3 1
d>0
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Isomonodromic approach to the Ki ich—Witten tau fi

n—point function

Following a similar strategy, from the Jimbo—Miwa—Ueno formula we can compute
inductively the n—point functions:

Bertola, Dubrovin and Yang, 2015

- 5T AT - F
A(N) = Z g§+162gT;l)”A—3g+l 1 Z 24g6g1(:”1 \—38+2
Then
i": (241 +d1)!!(2d2 + 1)1 R AM)AR2) At
d1,da=0 AP (A =22)? (A= X)?
= 2dy + 1)1+ (2d, + 1) tr(A(MNoy) - AQ\o,
d1,mz,;no( /\il)ﬂ__,g\;lnﬂ ) (Tay ++ Tdy) = UEZS Hje(% (lo,—k(ajﬂ)))'
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Isomonodromic approach to the K ich—Wit

Virasoro constraints

All the Virasoro constraints follow from the fact that a total differential is residueless:

d
res tr —

dW¥ _ 2(d+k+1)+1
Ui 2
A=00 dA (

d =
EBY O’3> A 0=

0
% (Lr)=0, k> -1
8T2d+1( ") - J
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d
res tr —

(d+k+1)
res tr (w—lﬂxz & (Let) =0, k> —1.

d =
EBY O’3> A 0=

_9
0T2d+1

E.g. let us derive the string equation L_;7 = 0: we need one preliminary observation
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All the Virasoro constraints follow from the fact that a total differential is residueless:

d
res tr —

dWV _ 2(d+k+1)+1
Ui 2
A=00 dA (

d =
EBY O’3> A 0=

0
9 (Ler)=0, k> 1.
8T2d+1( ") - J

E.g. let us derive the string equation L_;7 = 0: we need one preliminary observation

~ £ ~
_(oVy—1 — dey—1 — I4 5—1 —1 — £
A=(g¥v )+7(wd—w )+7 > (WETZAZ o3V )7 > LT,
2>1, £ odd + £>1,0 odd
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Isomonodromic approach to the K ich—Witten tau fi

Virasoro constraints

All the Virasoro constraints follow from the fact that a total differential is residueless:

(d+k+1)
Jes tri(\ll 1d‘~ll)\ +2+H1c73> dA=0= (LkT) =0, k> -1

0
dX dA 0Tad+1

E.g. let us derive the string equation L_;7 = 0: we need one preliminary observation

() (0589 (o),

S =
A=(¥y—1) —(vdOy-1) = (WﬁTeAE_lffs‘“*l) = X £Te_:
(ax )+ ( dax ) 13177 odd 2 + e>10 odd

2d+1 2d+1 2d—1
0=— res tr %(w*lAuu 2 )dA—— res tr(\U Tddyoan 2 24 ly—1d¥o 0 2 )dA:
=00

=— > %i’ Arzegctr(lll_l

2d+1
Wa_-,)\ 5 )d/\ 2d+1aalr.v57+ 54.0T1=
£>1, odd

T2d—1

£>1, odd >1, o

2
e~ 92 log T 2d+1 dlogT | 1 ___ 8 035 OlogT T3 |\ __ & L_q7
= T, 42dt1 +1640Ta=5-2— L7, 0T 11 )___0
Zd £OTy 20T2a1a T 2 DTzg—1 2°90 17 0T |, Eddz toT, ;" a dTaq11 \ 7
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Isomonodromic approach to the K ich—Penner tau fi

The Kontsevich—Penner tau function

The Kontsevich—Penner matrix integral is (A = diag(\1, ..., Av), Q a parameter)

exptr (1— — /\1/2X2 12
dX tr(—=A X?)dX.
/HN det(1 — IXA-1/2)@ /HN expr( )
As in the Kontsevich case, sending N — oo one can build the Kontsevich—Penner tau
function, which is a formal KP tau function 7(T1, T2, ...; Q) in the Miwa times

Ti(N) = %tr A2
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The Kontsevich—Penner tau function

The Kontsevich—Penner matrix integral is (A = diag(\1, ..., Av), Q a parameter)

exptr (1— — /\1/2X2 12
dX tr(—=A X?)dX.
/HN det(1 — IXA-1/2)@ /HN expr( )
As in the Kontsevich case, sending N — oo one can build the Kontsevich—Penner tau
function, which is a formal KP tau function 7(T1, T2, ...; Q) in the Miwa times

Ti(N) = %tr A2

Conjecture (Pandharipande—Solomon—Tessler, Alexandrov—Buryak-Tessler,
Safnuk,...)

Let F(t1, to,...; Q) be the generating function for the (refined) open intersection numbers
i i b tryg1: - trn+1
Fltnt,5Q) =) 3 @ ), = =iry -7g)s =
n>1 b>0 ri,...,rm>0

toty

2
_€+—(1+1QQ )+ Qutz + 24Q% + 3(1+12Qz)+0t12t4+~--

Then F(t1, ta, ...; Q) = log 7(T1, T2, ...) with Ty = (—1)k222¢,

12 / 23



Isomonodromic approach to the K ich—Penner

The Kontsevich—Penner tau function as an isomonodromic tau
function

As done by Bertola and Cafasso for the Kontsevich tau function, we want to identify the
Kontsevich—Penner tau function with an isomonodromic tau function. This is done in the
same way as explained above, but starting from the following variation of the Airy
equation:

q 0 1 0
Vo) ={0 0 1| wo())
Q X O

13 / 23



Isomonodromic approach to the Ki

The Kontsevich—Penner tau function as an isomonodromic tau
function

As done by Bertola and Cafasso for the Kontsevich tau function, we want to identify the
Kontsevich—Penner tau function with an isomonodromic tau function. This is done in the
same way as explained above, but starting from the following variation of the Airy
equation:

q 0 1 0
Vo) ={0 0 1| wo())
Q X O

Bertola and R, 2017

The isomonodromic tau function associated to the isomonodromic system obtained as
above by Schlesinger transformations of ODE above at the points A1, ..., Ay coincides
with the Kontsevich—Penner matrix integral.
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function

As done by Bertola and Cafasso for the Kontsevich tau function, we want to identify the
Kontsevich—Penner tau function with an isomonodromic tau function. This is done in the
same way as explained above, but starting from the following variation of the Airy
equation:

q 0 1 0
Vo) ={0 0 1| wo())
Q X O

Bertola and R, 2017

The isomonodromic tau function associated to the isomonodromic system obtained as
above by Schlesinger transformations of ODE above at the points A1, ..., Ay coincides
with the Kontsevich—Penner matrix integral.

One can pass (formally) to the limit N — oo and apply the same considerations above to
identify the Kontsevich—Penner tau function with the isomonodromic tau function of a

3 X 3 system. Therefore generating functions for n—point functions and Virasoro
constraints can be computed in the same way.

13 / 23



Isomonodromic approach to the K ich—Penner

One—point function (open case)

By the same strategy explained above we are able to compute the n—point functions.

Bertola and R, 2017

]
\]
|
N
~
x
NI~
Il
[0}
oS,
/N
N
N
N
N=
NiE |
2
N[=
Nk

8 2 8

3 14+12Q% 5 Q+ @,  1456Q%+16Q%, 6
T X+ B X TX F seo

3 3
Q _X7>+QX%2F2<1—1Q1;Q _X7>):

. .. 3
For Q@ = 0 it reduces correctly to the closed case giving exp )2(—4.
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By the same strategy explained above we are able to compute the n—point functions.

Bertola and R, 2017

]
\]
|
N
~
x
NI~
Il
[0}
oS,
/N
N
N
N
N=
NiE |
2
N[=
Nk

X3 3 - X3
|-5) ot (7] ))-

3 14+12Q% 5 Q+ @,  1456Q%+16Q%, 6
T X+ B X TX F seo

. .. 3
For Q@ = 0 it reduces correctly to the closed case giving exp )2(—4.

An equivalent alternative expression for the same one—point function:

coe = AQ) 3 (24 X\¢ j

r=0 j=0 j=0

14 / 23



Isomonodromic approach to the K ich—Penner tau fi

n—point function (open case)

Introduce P ,(Q) (polynomials in Q, a,b=0,%1, k =0,1,2,...)

I (a b+1) 5 z 1-a—b—2Q  1tat+b+2Q V4
S i aien 2P "’(Q)=632Fz( : e —)
a—b m 1 1ta—b
= r( +21+6 ) 1 3 4
r(a b+2) o 2mil 20+a+b z 2—a—b—2Q 2+4a+b+2Q 7
3 oy 2P @ - S (T -G

and the matrix A(\)

QPE (@A PL L(QAE i (@A
A(N) ::Z (?’310((?))\77+ Pfl,o(Q) 2 Poo(Q))‘i?

3k—2

k20 QP1,1(Q))\_7 Pﬁl,l(Q))‘_ 2 Po 1(Q)A™

Bertola and R, 2017

For n > 2 we have

> <H<”m ) =t Al ) s

. — . 2.
ri,..,rp>>0 \i=1 25’)\ i€S, B ) ”(A‘n )\11) ()‘1E _>‘2%)




Isomonodromic approach to the K ich—Penner tau fi

Open Virasoro constraints

The Kontsevich—Penner tau function satisfies
Lyir=0, k>-1
where

a 3 a 1 o2
Lk(Q)—ZE (Ta+§63,3> m-‘rz Z m-‘r

a>1 a,b>1, a+b=2k

3 0 T? 1 3 2
+§QaT2k+ (T+QT2) Ok,—1 + <T6+ZQ 0,0

Such Virasoro constraints can be obtained by the isomonodromic method as explained
before and they coincide with those computed by Alexandrov (2016).
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Isomonodromic approach to the open r—spin tau function

r—spin intersection numbers
More generally one can consider a model of the form (A = Y")

((X+Y)r+l yr+i
r+1 _XY

/ exptr dX / exptr § XYXy~'77 | dX.

H () det(XY 1 —+ 1 iHy

a=0

r = 2 = Kontsevich—Penner model; @ = 0 = r—spin (closed) intersection numbers.

R, in progress

This matrix model coincides with the isomonodromic tau function of the
(r+1) x (r + 1) isomonodromic system which is built as above by Schlesinger
transformations at the N points A; = y; of the ODE

01 -~ 0
dwo(n) _ | :
il Wo(N).
Q A - 0

The same arguments about the formal limit N — +o00 can be applied to this case = we
can compute open r—spin intersection numbers and the open r-spin Virasoro constraints
(in progress).
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Isomonodromic approach to the GW theory of pl

The stationary sector of the GW theory of P!

The stationary Gromov—Witten invariants of P! are the rational numbers

(Tdy ** Td)g. 1=/ /\eV: (w)/\cl (L)

)11

with nonvanishing condition d1 + ... + d, =2g — 2+ 28, 8 € HQ(IP’l,Z) =

w e H*(PY,C), fraw=1
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The stationary sector of the GW theory of P!

The stationary Gromov—Witten invariants of P! are the rational numbers

(Tdy ** Td)g. 1=/ /\eV (w)/\cl (L)

)l 1
with nonvanishing condition d1 + ... + d, =2g — 2+ 28, 8 € HQ(IP’l,Z) =17,
w € H*(P',C), [pw=1

Recently Dubrovin and Yang have found explicit formulae for n—point functions; such
formulae have been later proved with Zagier (an independent proof which makes use of
the Topological Recursion was given by Marchal).

Goal: identify such formulae with the isomonodromic approach; do they come from a
matrix model?

18 / 23



Isomonodromic approach to the GW theory of pl

The Riemann—Hilbert problem for the stationary sector of the GW
theory of P!: the bare problem

Let us denote by J,(x) the standard Bessel function;
<\V —1)" x\2n
2 ():=(3)" Tozo srcarrs (5)™
Introduce the piecewise analytic matrix
P27
a,(/\)::\/27rsJ)\7%(25), bi(A)i=q/ %2 (—:z‘friimJA+%(25)+mJi>ﬁ%(25)) ,
a,V()\)::\/27rsJ>\7%(25), by(A)=y/ZF (#&HJAJF%(ZS)#—ﬁmJiAi%QS)),
a(A):=e T X by (= N), by(A)i=e™ X apy (= X), ag(X):=eT by (= A), by (N)=eT ™ Xa (=),

ap(Xis)  bg(A—1;s)

w(X) reQ = [aﬂ(k-f—l;s) by(X;s)

], e {101,111V}

Bertola and R, in progress

W(A) is analytic and analytically invertible
_1 o
WOI~(10(x1))(£)7

W(A—1)= [ %;i *01] w(X)

det V(A)=1
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Isomonodromic approach to the GW theory of pl

The Riemann—Hilbert problem for the stationary sector of the GW
theory of P!: dressing and the tau function

Dress the jump matrices by

exp&(A; ), &(At) = %03 Z A

k>1

and let W(A; t.) = T(\; t) (%s)m_,, the solution of the dressed RHp.

The matrix W(X; t.) := W(X; t.)efM) satisfy deformation equations

0, V(N ) = [N E)I(N L), (ML) = % (rv e)oar (v e

and the Jimbo—Miwa—Ueno one—form is closed:

dr :
w (atj) = — res tr > (F 1 Y 3) XdX,  On,w(0r,) = 0w (0t,) .

Therefore introduce
8tj |Og T(t*) = w (89) .
Proposition (Bertola and R, in progress)

By construction, the logarithmic derivatives of 7(t.) evaluated at t. = 0 coincide with
Dubrovin, Yang and Zagier's formulae for the stationary GW invariants of P*.
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Isomonodromic approach to the GW theory of pl

The matrix model for the stationary sector of the GW theory of P':
two Bessel matrix functions

The following model was conjectured to yield stationary GW invariants of P* (Aganagic,
Dijkgraaf, Klemm, Marino and Vafa, 2006):

+oo +oo
f(\) = / exp (Ax — e —e ) dx = / exp (Mogt —t — til) % =2K_1(2).

—o0 0
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Isomonodromic approach to the GW theory of pl

The matrix model for the stationary sector of the GW theory of P':
two Bessel matrix functions

The following model was conjectured to yield stationary GW invariants of P* (Aganagic,
Dijkgraaf, Klemm, Marino and Vafa, 2006):

+o0 +oo

f(\) = / exp (Ax — e —e ) dx = / exp (Mogt —t — til) % =2K_1(2).
—o0 0
f(A) admits two distinct matrix versions A — A = diag(A1, ..., An):
det [951F(N,)] )
exptr (AX —eX —e X )dX =c¢ 2,01
/HN P ( ¢ ¢ ) NTTAGW, )
aT  det[f( +b-1)Y,

log 7T - T—T7" =
/Wexptr(/\ogT T-T )detT N A, .., M)

N
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The matrix model for the stationary sector of the GW theory of P':
two Bessel matrix functions

The following model was conjectured to yield stationary GW invariants of P* (Aganagic,
Dijkgraaf, Klemm, Marino and Vafa, 2006):

+o0 +oo

f(\) = / exp (Ax — e —e ) dx = / exp (Mogt —t — til) % =2K_1(2).
—o0 0
f(A) admits two distinct matrix versions A — A = diag(A1, ..., An):
det [951F(N,)] )
exptr (AX —eX —e X )dX =c¢ 2,01
/HN P ( ¢ ¢ ) NTTAGW, )
aT  det[f( +b-1)Y,

/ exptr (Nog T— T — T71)
H

+
N

=c
det7 7V A, - M)
The matrix model we obtain from Schlesinger transformations is

A N
det |Was (A, + b —1) (7) }

a,b=1

7‘1\1(/\17 ...,)\N) =

N e )
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Isomonodromic approach to the GW theory of pl

Open problems

o Understand better the relation with the matrix models
o Add descendants of the identity operator
o Compare with the Eguchi—Yang model:

/exptrN V(X)+Z X +2> B X (log X — ) | dX
Hn >1 >1

V(x) = —2x(logx — 1), ¢ := Z =.
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Thank you for your attention!

«O» «Fr «=» «=)» QA
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